You may have seen it on television – it’s an event that National Geographic has always loved to film. A grand spectacle and a treat for the senses, the Great Migration in Africa is the annual movement of the world’s largest (non-human) land animal group from one part of Africa to the other, in search of food and safer breeding grounds*.
Wildebeests, antelope, zebra and big cats congregate for five months of rigorous walking, eating, birthing and killing. Here are 5 amazing facts about it:
The Great Migration starts in Tanzania at the Serengeti and Ngorongoro Conservation areas and ends at the Maasai Mara National Reserve in Kenya. The migration starts in the month of November and the animals reach their destination in March.
A recorded 1.5 million wildebeest, 200,000 zebra and thousands of antelope make the migration each year. The animals travel a staggering 2900 kilometres (1800 miles) in total, from Tanzania to Kenya and back during this journey.
The Great Migration follows one of the most dangerous routes in Africa. Animals making the journey have to deal with hungry predators (lions, cheetahs & crocodiles), treacherous floods, the uncaring African sun, mean-spirited tsetse flies and physical tiredness. More than 250,000 wildebeests and thousands of zebras and antelopes die each year on the journey. This is excluding the thousands of calves who are left orphaned and vulnerable to predators after their mothers die. A recorded 3000 lions follow the herds on their journey, picking off the weak and the injured.
More than a foraging mission, the Great Migration is a breeding expedition. Pregnant wildebeests move from Tanzania to Kenya for better environmental conditions for calving. An estimated half a million baby wildebeests are born annually during the migration. In the peak of the calving season (February), more than 8000 wildebeest calves are born in a single day!
Although they look like they’re confused and panicked all the time, the massive herds of wildebeests, zebras and antelopes actually function together as one cohesive unit. They display a tactic researchers call “swarm intelligence”, where they carefully analyse, strategise and implement a plan of action to get safely past any threat together. There’s no “I” in this family.
Bonus
There is still no established and accepted explanation for the occurrence of the Great Migration.
Some scientists believe the changing chemistry of the grass could be the reason for the movement. When levels of phosphorous and nitrogen in the Serengeti grassland reduces, the wildebeests may be encouraged to move elsewhere for more nutritious meals, acting as the catalyst for the Great Migration. Others believe that the migration may be the result of a co-ordinated effort helmed by a leader. But so far there has been no evidence of there ever being an alpha-wildebeest in any herd. Then there are those scientists who believe that the Great Migration is the consequence of instinct and DNA – a purely biological process that has no other reason.
Well, whatever the rationale, fossil records show that the Great Migration has been in occurrence in East Africa for over one million years.
A sea of wildebeests, zebras and antelopes greet the eyes during the Great Migration. Often, these herds extend all the way to the horizon; but they don’t stop there. They go on & on. (image source)
Wildebeests crossing the Mara river – this is where they are most vulnerable to attack from crocodiles. (image source)
A wildebeest mother with her newborn calf. (image source)
Video: Watch the culmination of the Great Migration – wildebeest giving birth & a newborn’s first, wobbly steps.
Ah baby animals…these bundles of joy have been lighting up the wild for millennia. While everyone has been raving about their cuteness, not a lot of people have spoken about their size. Let’s face it, when it comes to size, some animals are impressive…impressively small.
Here are 3 animals whose babies are way smaller than you thought they would be:
Kangaroos
Kangaroo adults can reach heights of 5.25 feet (1.6 meters) and can weigh 90 kilograms (200lbs). But their newborn joeys are smaller than gummy bears, often smaller than 25 millimeters.
An adult female kangaroo
A newborn joey
Watch the incredible journey this little joey makes to reach the safety of its mother’s pouch:
Pandas
At their heaviest, adult pandas can weigh 160 kilograms (350 lbs). But their tiny cubs weigh only 1/900th of their mother’s weight! Now that’s really tiny.
A panda mom with her newborn cub
See that little pink floppy thing on the left side? yup, that little nugget is the cub.
Here’s a fun question; what do you call a group of pandas? An embarrassment! Ha ha, all jokes aside, a group of pandas is called “an embarrassment” because of the boisterous way in which panda cubs play when they’re together. It could embarrass any mum.
Now indulge in some cub time by watching twin panda cubs embark on their first 100 days of life.
Elephants
One of the most intelligent animals on the planet, elephants have longest gestation period in the wild. It takes their bodies 22 months to fully develop the calf (imagine being pregnant for almost two years!). But surprisingly, baby elephants when born are only 90 kilograms (200 lbs), while their heavy-weight mothers, aunts and sisters (and not to forget, their brothers and fathers) can reach ridiculously high weights of 3600 kilograms (4 tonnes)!
Adult elephants
A newborn elephant calf
Watch as this newborn calf, just hours old, meets his herd-mates, learns how slopes are not a baby’s friend and discovers the forest he is to grow up in.
Armadillos swallow large quantities of air to inflate themselves into a balloon-like shape and float across water bodies.
The three-banded armadillo is the only one of its species that can form into a complete ball. Its shell is so hard that even dogs can’t break it.
When startled, armadillos jump 3-4 feet vertically into the air. This is the biggest cause of fatal accidents between cars and armadillos.
The nine-banded armadillo becomes mother to 4 genetically-identical quadruplets each time it gives birth. Why? It produces a single egg that divides into 4 equal and completely identical parts.
Armadillos are the only animals other than humans which can contract leprosy.
Bonus:
Armadillos are a delicacy in the United States. In fact, there’s a special dish called the Hoover Hog which locals in the southern United States make, using roadkill armadillo, fresh veggies and spices.
However, I strongly discourage you to try this dish, as it is one of the causes of leprosy transmission between armadillos and humans.
A three-banded armadillo rolling into a complete ballGlyptodon; an extinct animal believed to be one of the ancestors of the modern-day armadillo
A baby armadillo being fed milk
Three banded armadilloScreaming hairy armadilloAndean hairy armadillo
“Anorexia nervosa is a complicated disorder and genes aren’t everything. The genes load the gun but the environment pulls the trigger.”
-Dr. Janet Treasure
When Dr. Janet Treasure, senior lecturer at the London Institute of Psychiatry conducted her research into the origins of Anorexia nervosa in humans, she found herself following a path not many knew about; but which could explain how Anorexia functions in human beings.
This path less travelled by, was the study of a disease that only few knew existed and which hardly any understood – Pig Anorexia.
It was in 1962 at a farm in Ontario, Canada that the resident pig keeper noticed something amiss with the new litter of piglets. The tiny creatures had been recently weaned from their mother and were being fed by hand by the farm boys.
While things seemed fine at first, the pig keeper noticed the piglets had stopped eating soon after, often starving themselves for days until they were just skin and bones. With this starvation came the vomitting, the weakness and the weight loss.
The hunger, combined with the deteriorating condition of the body, soon grew too much for the tiny piglets to cope with and the entire farrow lost its life.
This was the very first case of ‘pig anorexia’ as it soon came to be called and it is a disease that has affected pigs the world over.
The Hemagglutinating Encephalomyelitis Virus (HEV) is a RNA virus that affects porcine, aka pigs. As an RNA virus, it affects the pigs’ RNA, infecting the animal at the cellular level.
In every living creature, the DNA is the genetic blueprint of the body and it dictates the physiological and psychological make-up of the creature. The RNA is an acid present in the cells, which carries messages from the DNA and stimulates the production of proteins. These proteins are used by the cells to develop and control the functioning of the various organs inside the animal’s body.
Multiple RNA strands work within the cells of an animal’s body throughout its life. Ultimately, the RNA are responsible for the health of the proteins, the cells and the animal itself.
Now imagine if the HEV were to infect the RNA of the piglets. Each and every time an infected RNA would stimulate the production of proteins in the body, the proteins and by extension the cells, would be infected too.
Slowly over time, the HEV starts infecting the piglets from the cellular level by making their cells and organs diseased.
How does HEV spread?
HEV is just like any other virus and it spreads from contact with body liquids. These liquid spread between snout-to-snout contact and can also spread to pigs through indirect contact with boots, jackets, farm equipment etc. if pig saliva or mucus is splattered on them.
It’s been observed that most porcine populations are exposed to these viruses everyday. But only 1% – 4% of the population ever experience an active attack. Piglets are the most vulnerable to the virus, given their lack of immunity and strength.
Infected piglets will often have microscopic lesions inside their snout, on their tonsils and on the walls of their stomach. When the virus spreads, it moves to the lungs, small intestine and finally the brain through the sensory nerves. It is when the virus reaches the brain that piglets exhibit full-fledged anorexia-like symptoms.
The HEV has been observed re-writing the signals sent to the brain, changing the behaviour of the piglets. The affected piglets display low hunger levels at first and soon start skipping meals. During later stages of the disease, they may vomit extensively and may start dehydrating as a result. The muscles start to wear-out and soon, the piglet is just skin and bones. Death is an inevitable result of the disease.
The HEV-induced infection is a porcine-only infection and does not spread to humans.
Anorexia nervosa is an eating disorder in humans, where the sufferer stops eating or refuses to eat and starts exhibiting a variety of symptoms including:
Sudden loss of weight
Listlessness
Depression
Constant vomiting and diarrhoea
Extreme weakness and lethargy
Hormonal imbalances
Low tolerance to heat or cold
Pigs infected by the HEV display symptoms so close to Anorexia nervosa, that the disease has been named Pig Anorexia.
It can get extremely challenging to diagnose the presence of HEV in pigs. For one, symptoms resemble other diseases like Encephalitis, Vomiting & Wasting Disease or the Classical Swine Fever (or Hog Cholera). The only way now to identify if a porcine herd is a victim of the HEV, is to understand their origins and their environment.
Of birth and breeding
Pig pens are extremely fertile incubation areas for the Hemagglutinating Encephalomyelitis Virus (HEV). Once the virus takes root, it cannot be eliminated. The reason for this is the lack of a cure. To this day, there is no clinical cure available to help affected piglets.
But, there is something pig breeders can do to reduce herd vulnerability.
Piglets get high immunity from the colostral antibodies found in the mother’s milk. Putting piglets onto the teat at the earliest can reduce chances of an infection by half. Second, keeping the pen clean and free of fecal matter can reduce chances of infection further.
But this still won’t be enough. It’s been observed that susceptibility to the HEV is also affected by genetics. Pigs birthed naturally, without human intervention have the highest chance of survival as they have the most natural genetic structure which is designed to combat fatal illnesses.
However, with humans preferring leaner bacon cuts over thicker ones, pig farmers are deliberately isolating and promoting those genes which give rise to thinner piglets. This type of genetic manipulation, makes the piglets weaker and more susceptible to infections, including the HEV.
Dr. Janet Treasure said, anorexia is as much about genes as it is about the environment. When combined with the weak genes, the poor rearing environment and pathetic post-birth care practices can double the chances of piglets developing anorexia-like symptoms post-weaning.
Physically, the impact of HEV-induced pig anorexia is nightmarish. Thousands of pigs die each year because of the lack of veterinary care. Exposure to infected piglets often puts other healthy animals too at risk and increases the headcount.
A 2013 research∗by Reimert, Bolhuis, Kemp, & Rodenburg showed how untrained pigs when introduced into a new pen of trained pigs, adopted the behaviours and mannerisms of their trained counterparts, after sustained exposure to them. These behaviours and mannerisms included everything from the way the tails were held to the vocalizations made to the choice of food the pigs were making. This could be an attempt at social acceptance by the pigs or a mimicry of a positive stimulus-response behaviour.
Now let’s apply the same logic here. Imagine if new pigs are introduced to an infected herd which displays signs of starvation, depression and social isolation. The new pigs too are more likely to mimic this refusal of food and they may socially isolate themselves, following the example of the herd.
This psychological impact that the HEV has on healthy pigs, can lead to true pig anorexia, with pigs refusing to eat out of fear, anxiety or depression.
The idea that pig anorexia could bring about a breakthrough in the study of anorexia in humans was unthought of. But during her study, Dr. Treasure realized how similar pigs were to humans in terms of psychology and social behaviour.
Her study into pig anorexia helped her understand a key component about Anorexia nervosa – while genes do play a vital role in indicating susceptibility to the disorder, it is the environmental factors that finally trigger the condition. Essentially, people may be pre-disposed to anorexia through genetics, but this pre-disposition is unlikely to have a major negative impact so long as the person’s upbringing is filled with love and support.
Just like fecal matter in pig pens, constant negative feedback from family can make people more likely to suffer from anorexia. Remove this environmental contamination and you reduce the subject’s vulnerability to the disorder. This insight is now helping medical professionals find lasting treatments for anorexia in humans.
Found in South America, the Rhea bird is one of the largest flightless birds in the world. Research shows that Rhea dads could be the most devoted fathers in the world of the feathered.
Basic info:
Name: Rhea
Scientific classification:
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Order: Rheiformes
Family: Rheidae
Genus: Rhea
Height: 3-5ft
Weight: 55-80 pounds
Diet: Broad-leafed plants, roots, seeds, fruits, small insects, baby reptiles and small rodents
Mating: Polygamous
Nest size: 10-60 eggs
Flight: Flightless; can run at speeds up to 40 miles/hour
Found in: Argentina, Bolivia, Brazil, Chile, Paraguay, Peru, and Uruguay
Rhea dads take on the sole responsibility of building the nest. This includes finding the right spot, procuring the right materials and building a good quality nest (and they do this for every female they mate with – which can be anywhere between 2 & 12).
Rhea fathers are a lot like penguin dads. They incubate the eggs and hatch it themselves (they usually attract the females to the nest – a shallow hole in the ground lined with leaves and moss – and have them deposit their eggs there).
These birds are great at using decoys. They use rotten eggs, mouldy fruit and other animal bait as decoys to distract predators from the nest. These decoys are lined around the nest and are replenished whenever they are consumed. This helps keep the clutch safe from harm.
Once the eggs hatch (after 6 weeks of incubation), the Rhea father spends the next 6 months caring for the chicks. The chicks burrow into their father’s feathers and revel in his feathery warmth. So possessive is he of his clutch, he even keeps the mothers at bay by attacking them with a ferocious charge and vicious bite.
Often, when they aren’t fulfilled by their existing brood, Rhea dads charge adolescent males as stand-in fathers, while they mate with more females and create a new nest. They then rotate between the nests, caring for the young and making sure they are properly protected.
Want to know more about this not-so-deadbeat dad? Take a look at the video below:
When it comes to fatherhood, its safe to say that the Rhea male is extremely devoted. He is one of those exceptions, who joins ranks of those animal dads who outrank mom in the art of child rearing.
Moms…what would we do without them? Across the animal kingdom, it’s the materfamilias who rears the young. This International Mother’s Day, let’s celebrate the spectacular force of nature that is – Mom.
There are all kinds of moms in the world and each of them has a unique parenting style. This Mother’s Day, let’s take a look at some of these powerful women and how they impact their young’s life.
In this article, we’ll look at 3 categories of animal moms and their relationship with their young. Be sure to watch the videos of these moms in action. Here we go:
Mom #1: The Single Superstars
The moms under this list are the lone warriors of the animal kingdom. They single-handedly raise their young and train them to survive in this cruel, wild world:
Orangutans
Of all the mothers in the animal kingdom, Orangutan moms are the most patient, gentle and forbearing. Although they reside in groups where there are both males and females, the father seldom takes any interest in rearing his young.
The Orangutan mother is devoted to her baby’s upbringing right from birth. She builds the baby her nest in a tree (every night a new nest!), picks berries for her to eat, teaches her how to use tools, shows her ways to stay safe in the forest and essentially, makes her a responsible and contributing member of the group.
Orangutan mothers do have one fault though. They love their kids a little too much and spoil them rotten. So much so, that many orangutan babies stay with mom until they’re 10-12 years old.
Ruby-throated hummingbird
The female ruby-throated hummingbird is one of the most diligent birds in the animal kingdom. She really works very hard when raising her young. A single mother by all definitions, her mate’s role ends at egg fertilization.
Once she’s ready to lay her eggs, the ruby-throated hummingbird sets about building the nest. It’s an arduous process, which can tire even bigger animals. Once her nest is built, she lays the eggs and gestation takes up to 2 weeks. Once the eggs hatch, the mother visits flower-upon-flower collecting nectar for her young. She makes repeat visits for days until the young are ready to take flight and fend for themselves.
For a mom this size, that’s a lot of work.
Mom #2: The Gritty Girl Gangs
Strength comes in numbers and these moms understand the immense benefits of community child rearing:
Elephants
When it comes to elephants, there is no such thing as a ‘single parent’. One cow-elephant having a baby equates to the entire herd having a baby. For elephants, the birth of a calf is a monumental occasion. The entire herd comes together to raise the baby after the mother’s 22 month gestation period. In fact, elephant calves spend more time with their aunts and siblings than their mothers. When a calf is threatened, each member of the group stops what she is doing and answers the baby’s call.
Elephant herds have designated babysitters (adolescent females a year or two from maturity, practicing their mothering skills), who take an active role in educating the calf and teaching it how to use its trunk, how to select the right leaves and how to be an asset to the herd.
Orcas
Have you ever seen an orca pod teaching the calf to hunt? No? Well, you should. Orcas are one of the most fearsome predators of the oceans and they are one species that believe in giving their young a hands-on learning experience.
When a calf is born, the entire pod (which is matrilineal) works together in caring for, feeding, cleaning and protecting the young from danger. When the calf is old enough to hunt, the mother (with her sisters, nieces and mother), takes the calf on hunting tours and teaches it to hunt seals and penguins.
This girl gang sticks up for its babies and there’s nothing they won’t do to keep the calves safe from harm.
Mom #3: The Paragons of Sacrifice
If the rest of the animal kingdom believes in staying alive for their young, there are those moms who willingly embrace death to give their wards a better chance at survival:
Octopus
When it comes to maternal devotion, no animal can beat the octopus. After laying her brood of eggs (that number in the tens of thousands), the mother octopus painstakingly works on keeping the eggs dirt-free. She gently blows freshwater on the eggs to keep them hydrated and nourished and spends up to 14 months protecting her eggs from predators.
During this time, the octopus does not leave her nest even for a second to feed and in the process wastes away into nothing. By the time the eggs are ready to hatch, the octopus mom will literally be a shell of what she once was.
A parent eating their young is common in the wild. But Matriphagy, where a young devours its own mother is rarer still. But spider babies seem to find nothing unnatural about this arrangement.
The spider mother gives the new hatchlings her unfertilized eggs to eat during the first few days post-birth. Once this repository of eggs gets over, the mother offers herself up to her babies for their next meal. The baby spiders pierce the abdomen of the mother and greedily suck out her bodily fluids; killing her in the process.