When we refer to plecos, we refer to the 138 species of fish that come under the genus Hypostomus.
The plecos’ skin may look slimy, but its texture is like that of a rocky armour.
Plecos are gentle with most fishes except their own species, who they can be very aggressive towards.
Plecos never reproduce in captivity, but females can lay up to 300 eggs in the wild!
Bonus
Veteran aquarium keepers never write or say aloud the plecos’ full name “plecostomus” because of an old superstition that says “speaking or writing the name will cause the fish to die”.
Cheetahs are super-fast and can reach 112 kms/hour in just 3 seconds. Top speeds have been recorded at 120 kms/hour in 3 seconds!
A cheetah’s body is designed to run. The thick rudder-like tail, muscular legs, non-retractable claws, flexible spine and wide chest make it the ultimate lean, mean running machine.
There are only 7100 cheetahs left in the wild. The cheetah is on the Endangered Species List and is considered extremely vulnerable to extinction.
Bonus:
Ancient Sumerians, Egypt’s King Tut and the Mughal emperor Akbar trained thousands of cheetahs as guards and hunters for their royal houses.
(But this didn’t mean they could keep up with the Cheetah during chases and hunts. Take a look at this video which pits two of the fastest creatures on the planet in a race against each other, to know what we mean)
They are 98% human! 98% of the Gorilla’s genes are the same as the genes found in humans.
They live only in Africa and no where else in the world.
They make up to 25 different sounds, which is the highest level of vocalization by any great ape after humans. One gorilla named Koko even knew sign language and could make 1000 different signs!
Want to identify a gorilla? Take its nose print. They’re unique (just like human fingerprints).
Homosexuality exists in gorilla families and often females pair together and engage in sexual activity.
Bonus:
When we refer to “Silverbacks”, we mean “male gorillas who’s over the age of 12” and who are often troop leaders. “Blackbacks” are “males under the age of 11”.
Pretty fun to sing isn’t it? And a wonderful sight it would be too. Especially in the wild.
Nature has her fair share of spectacularly beautiful animals and plants. Super colourful and oh-so-inviting, your only wish would be to touch the creature and feel it under your fingers. But do so and that may be the last thing you ever do.
If there’s one thing you need to remember about the wild, it’s that Colours = Poison.
Say hello to Aposematism
What do they call an animal that uses bright colours to ward-off danger? An aposematic animal of course. Aposematism is the biological process of using colours as signals to repel predators.
Animals brighten their skin pigments or even change their colours as warning to other animals not to cross their path. Plants, flowers, fungi and seeds use bright colours which indicate high levels of toxicity (which animals learn indicate ‘Don’t Eat’).
Aposematic animals & plants work in weird, but wonderful ways. While some are genuinely poisonous and use unique colours to their advantage, others are non-poisonous and mimic their more dangerous cousins to confuse and scare-off their predators, who otherwise may attack them.
But here you have below the list of 5 animals who really are poisonous and who use colour as a warning sign in the wild. Remember, they may look enchanting and you may want to touch them or pet them. But trust me, it’s better you stay away.
Now, without further ado, here are our top pics for pretty but potent animals in the wild:
1) Amazonian Poison Dart Frog
This one is most certainly the poster boy for ‘colorful but potent’ category in the wild (hence the feature image ;D)
Poison dart frogs are one of the most toxic creatures on land. Dart frogs don’t make their own poisons, but store the poison of the insects and smaller animals they eat. They then process these poisons and combine them to make a very potent toxin…something which can be severely painful for humans.
Local Amazonian tribes use the tree frog’s poison to coat their darts, which they use to hunt monkeys and birds. The most toxic of all Amazonian tree frogs is Phyllobates terribilis.
Red Striped Poison Dart FrogBlue Poison Dart FrogYellow-Banded Poison Dart FrogPhyllobates terribilis aka Golden Poison Frog
2) Caterpillars
The Monarch Butterfly and the Pipevine Swallowtail store and use their prey’s toxin as a defence mechanism when they are older. Birds know they can be deadly to eat and avoid them. But other than a handful of these winged critters, most butterflies and moths aren’t poisonous. But the same can’t be said of their offspring.
Many caterpillars have a poisonous coating on their body, which protects them from being eaten by predators when they are young & helpless. While some poisons only knock the predator out for a few hours, others kill. A case in point is the formidable N’gwa or ‘Kaa caterpillar, which is found in Africa and whose toxin, according to researcher David Livingstone, which is a mixture of snake venom and plant toxin, has the capacity to kill an antelope.
Saddleback CaterpillarStinging Rose CaterpillarGypsy Moth CaterpillarSpiny Oak Slug Caterpillar
3) Hooded Pitohui
Did you ever think a bird would be on this list?
The Hooded Pitohui, scientifically called Pitohui dichrous makes its home in the lush forests of New Guinea. The size of a dove, the Pitohui is the only documented poisonous bird in the world.
It’s toxin is a neurotoxin which numbs and paralyzes the victims. Luckily, this toxin isn’t fatal to humans, although the effects can take hours to wear-off. Sadly, the same isn’t true for its prey which are insects.
The Hooded Pitohui is part of a 3-species family, which also includes the Variable Pitohui and the Brown Pitohui, which are poisonous too, but not to the level of toxicity as their hooded cousin. The toxin has been found to be the outcome of the birds’ consumption of the choresine beetle. Such a nuisance is this bird to the surrounding tribes, it had been nicknamed Pitohui or ‘rubbish bird’ by the locals, which then was adopted as its official name.
Here’s an animal that can (and has) kill(ed) a human. Puffer fish are one of the most venomous animals on the planet and a single sting can bring down the mightiest of men. Often, human deaths occur when people unwittingly consume puffer fish organs in their meal. In animals though, its often a result of the puffer’s hunting or defence strategy.
The toxin the puffer fish contains is called Tetrodotoxin, which is a highly potent neurotoxin. The toxin slowly blocks all the neural transmitters in the body, essentially paralysing the victim, one organ at a time. At its peak, the Tetrodotoxin closes the wind pipe, slows down the lungs and stops the heart from working. Soon, the brain dies due to asphyxiation and lack of blood flow, killing the victim. Scientists believe Tetrodotoxin is 200 times more lethal than cyanide!
Want to know something even more unbelievable? The Japanese have a very special dish called Fugu which is made of puffer fish and is served during very special events. And guess what? Chefs deliberately leave a bit of the poison on the fish as an adrenaline-inducing treat for the guests.
They look harmless, inviting even. But pick one up and you’ll be stung faster than you can say ‘Oh no!’. Cone snails are another sea dweller that even humans need to beware of, if they don’t wish to be hurt or worse, dead.
Coming in a variety of shapes and sizes, cone snails contain a variety of neuro venoms (depending on the species) and can range in toxicity that’s akin to everything from a bee sting to a fatal hit. These snails shoot out harpoons, which are teeth-like organs which they use when hunting underwater. Any animal that has the misfortune of brushing against the cone snail will be the unfortunate recipient of the harpoon.
One species of cone snail that are extremely potent to humans is the Conus geographus or the Cigarette snail, whose toxin is said to be so quick-acting that victims have only time enough to smoke a small cigarette before dying.
Another gastropod that is poisonous – Nudibranch. You can read all about them here.
Conus Geographus, aka the Cigarette snailMarbeled Cone SnailTypes of Poisonous Cone Snails
In the next article, we’ll focus on the Top 5 Most Colourful & Poisonous Plants and Fungi.
P.S: * This article may be disturbing for some. Reader discretion is advised.
If you thought baby humans were tiny and vulnerable, think again. Baby orangs take first place as one of the most fragile and breakable newborns on the planet.
A baby orangutan needs round-the-clock care up until at least 1 year of age. Just like human babies, they are absolutely helpless and powerless and need their mothers (or carers in captivity) to feed them, bathe them and give them lots of hugs. In the wild, babies stay with their mother for 8-9 years, learning how to be an orang.
But these days, due to increasing commercial activity in Borneo and Sumatra, orangutans are being ripped apart from their homes; many apart from their families. Deforestation, coupled with human-orang conflicts which at times leads to mum’s death, can be quite traumatic for baby orangutans.
Often, workers and resident villagers keep orphaned baby orangs illegally as pets. They even sell them on the black market to make a quick buck. This can be especially devastating for baby orangs. Fed the wrong food and kept in unhygienic and harmful conditions, these babies find themselves spiralling down towards abysmal health.
It has been found that baby orangs that experience trauma at a young age often develop PTSD and may go into depression or have anxiety attacks as adults. In extreme cases, this manifests itself as self-harm. It has been noticed how traumatized orangs bite or scratch themselves, pull out their fur and hurl themselves against the wall when unable to overcome the frustration and anxiety they have building within them.
This is where orangutan care centres are especially important. These centres help vets, animal experts and volunteers care for baby orangs and rehabilitate them back into the wild. Take a look at this video below of baby Joss, who was rescued from a house that kept her as a pet where she was ill-treated the entire time.
Many orangutans may even find it very difficult to forge meaningful relationships with other orangs and their human caregivers.
A case in point is Pony, a 17 year old female orangutan who was rescued from a brothel, where she was sold as a sex slave when she was a baby. Pony was trained to perform unnatural acts with humans and this resulted in her developing serious PTSD and an intense aversion to humans; something which is slowing down her treatment.
Unwilling to interact with humans, Pony is isolating herself from other orangs and her caregivers. Not taught how to forage when young and having been alienated from her natural psychological development, she has made no progress in her healing and the prospect of her release into the wild looks bleaker by the day. Although rescued at age 7, Pony was too old to provide the care her younger cousins (like Joss in the video) were given. Now caregivers use a combination of medication and routine activities to keep her calm and help her regain her trust in humans. To know more about her, follow this link*.
Awareness about these endangered creatures and how they are being abused can help us find ways to save them and protect them. We may not be able to do much for Pony, but we may certainly be able to save others from this terrible fate if we try. Share this post and spread the word about the harrowing journey these little ones face.
“Anorexia nervosa is a complicated disorder and genes aren’t everything. The genes load the gun but the environment pulls the trigger.”
-Dr. Janet Treasure
When Dr. Janet Treasure, senior lecturer at the London Institute of Psychiatry conducted her research into the origins of Anorexia nervosa in humans, she found herself following a path not many knew about; but which could explain how Anorexia functions in human beings.
This path less travelled by, was the study of a disease that only few knew existed and which hardly any understood – Pig Anorexia.
It was in 1962 at a farm in Ontario, Canada that the resident pig keeper noticed something amiss with the new litter of piglets. The tiny creatures had been recently weaned from their mother and were being fed by hand by the farm boys.
While things seemed fine at first, the pig keeper noticed the piglets had stopped eating soon after, often starving themselves for days until they were just skin and bones. With this starvation came the vomitting, the weakness and the weight loss.
The hunger, combined with the deteriorating condition of the body, soon grew too much for the tiny piglets to cope with and the entire farrow lost its life.
This was the very first case of ‘pig anorexia’ as it soon came to be called and it is a disease that has affected pigs the world over.
The Hemagglutinating Encephalomyelitis Virus (HEV) is a RNA virus that affects porcine, aka pigs. As an RNA virus, it affects the pigs’ RNA, infecting the animal at the cellular level.
In every living creature, the DNA is the genetic blueprint of the body and it dictates the physiological and psychological make-up of the creature. The RNA is an acid present in the cells, which carries messages from the DNA and stimulates the production of proteins. These proteins are used by the cells to develop and control the functioning of the various organs inside the animal’s body.
Multiple RNA strands work within the cells of an animal’s body throughout its life. Ultimately, the RNA are responsible for the health of the proteins, the cells and the animal itself.
Now imagine if the HEV were to infect the RNA of the piglets. Each and every time an infected RNA would stimulate the production of proteins in the body, the proteins and by extension the cells, would be infected too.
Slowly over time, the HEV starts infecting the piglets from the cellular level by making their cells and organs diseased.
How does HEV spread?
HEV is just like any other virus and it spreads from contact with body liquids. These liquid spread between snout-to-snout contact and can also spread to pigs through indirect contact with boots, jackets, farm equipment etc. if pig saliva or mucus is splattered on them.
It’s been observed that most porcine populations are exposed to these viruses everyday. But only 1% – 4% of the population ever experience an active attack. Piglets are the most vulnerable to the virus, given their lack of immunity and strength.
Infected piglets will often have microscopic lesions inside their snout, on their tonsils and on the walls of their stomach. When the virus spreads, it moves to the lungs, small intestine and finally the brain through the sensory nerves. It is when the virus reaches the brain that piglets exhibit full-fledged anorexia-like symptoms.
The HEV has been observed re-writing the signals sent to the brain, changing the behaviour of the piglets. The affected piglets display low hunger levels at first and soon start skipping meals. During later stages of the disease, they may vomit extensively and may start dehydrating as a result. The muscles start to wear-out and soon, the piglet is just skin and bones. Death is an inevitable result of the disease.
The HEV-induced infection is a porcine-only infection and does not spread to humans.
Anorexia nervosa is an eating disorder in humans, where the sufferer stops eating or refuses to eat and starts exhibiting a variety of symptoms including:
Sudden loss of weight
Listlessness
Depression
Constant vomiting and diarrhoea
Extreme weakness and lethargy
Hormonal imbalances
Low tolerance to heat or cold
Pigs infected by the HEV display symptoms so close to Anorexia nervosa, that the disease has been named Pig Anorexia.
It can get extremely challenging to diagnose the presence of HEV in pigs. For one, symptoms resemble other diseases like Encephalitis, Vomiting & Wasting Disease or the Classical Swine Fever (or Hog Cholera). The only way now to identify if a porcine herd is a victim of the HEV, is to understand their origins and their environment.
Of birth and breeding
Pig pens are extremely fertile incubation areas for the Hemagglutinating Encephalomyelitis Virus (HEV). Once the virus takes root, it cannot be eliminated. The reason for this is the lack of a cure. To this day, there is no clinical cure available to help affected piglets.
But, there is something pig breeders can do to reduce herd vulnerability.
Piglets get high immunity from the colostral antibodies found in the mother’s milk. Putting piglets onto the teat at the earliest can reduce chances of an infection by half. Second, keeping the pen clean and free of fecal matter can reduce chances of infection further.
But this still won’t be enough. It’s been observed that susceptibility to the HEV is also affected by genetics. Pigs birthed naturally, without human intervention have the highest chance of survival as they have the most natural genetic structure which is designed to combat fatal illnesses.
However, with humans preferring leaner bacon cuts over thicker ones, pig farmers are deliberately isolating and promoting those genes which give rise to thinner piglets. This type of genetic manipulation, makes the piglets weaker and more susceptible to infections, including the HEV.
Dr. Janet Treasure said, anorexia is as much about genes as it is about the environment. When combined with the weak genes, the poor rearing environment and pathetic post-birth care practices can double the chances of piglets developing anorexia-like symptoms post-weaning.
Physically, the impact of HEV-induced pig anorexia is nightmarish. Thousands of pigs die each year because of the lack of veterinary care. Exposure to infected piglets often puts other healthy animals too at risk and increases the headcount.
A 2013 research∗by Reimert, Bolhuis, Kemp, & Rodenburg showed how untrained pigs when introduced into a new pen of trained pigs, adopted the behaviours and mannerisms of their trained counterparts, after sustained exposure to them. These behaviours and mannerisms included everything from the way the tails were held to the vocalizations made to the choice of food the pigs were making. This could be an attempt at social acceptance by the pigs or a mimicry of a positive stimulus-response behaviour.
Now let’s apply the same logic here. Imagine if new pigs are introduced to an infected herd which displays signs of starvation, depression and social isolation. The new pigs too are more likely to mimic this refusal of food and they may socially isolate themselves, following the example of the herd.
This psychological impact that the HEV has on healthy pigs, can lead to true pig anorexia, with pigs refusing to eat out of fear, anxiety or depression.
The idea that pig anorexia could bring about a breakthrough in the study of anorexia in humans was unthought of. But during her study, Dr. Treasure realized how similar pigs were to humans in terms of psychology and social behaviour.
Her study into pig anorexia helped her understand a key component about Anorexia nervosa – while genes do play a vital role in indicating susceptibility to the disorder, it is the environmental factors that finally trigger the condition. Essentially, people may be pre-disposed to anorexia through genetics, but this pre-disposition is unlikely to have a major negative impact so long as the person’s upbringing is filled with love and support.
Just like fecal matter in pig pens, constant negative feedback from family can make people more likely to suffer from anorexia. Remove this environmental contamination and you reduce the subject’s vulnerability to the disorder. This insight is now helping medical professionals find lasting treatments for anorexia in humans.
What happens when you roam the seas for 400 million years? Why you become a Coelacanth of course! Meet the fish that have baffled scientists with their unexpected return from the dead.
10 mind-blowing facts about the Coelacanth
*(pronunciation: SEEL-uh-kanth)
They were thought to be extinct
Up until 1938, it was assumed that Coelacanths were extinct. The handful of the specimen caught by fishermen was all dead and the rest were fossils; but, in 1938, a live specimen was caught off the coast of South Africa. As of today, there are two known species of Coelacanths in the wild – one near the Comoros Islands, Africa and the other in Sulawesi, Indonesia.
Coelacanths are endangered species. Research suggests that there are just between 230 & 650 coelacanths in the wild today.
They are the key piece in the puzzle about the Earth’s first terrestrial vertebrates
Fossil records of Coelacanths show that they originated during the Devonian Period which ended 419.2 million years ago. This was the era in evolution when the first terrestrial animals made an appearance.
The Coelacanths’ physiological characteristics resemble in part those traits we observe in land-based creatures today. Scientists believe that Coelacanths may be the missing link that might point us to the exact moment in evolution when the world’s first underwater vertebrates made their foray to the land.
Evolution of vertebrates from the sea to the land (Image Source)
They have some very unique organs and some vestigialones
While Coelacanths may be the clue to the evolution of terrestrial vertebrates, they don’t have a vertebral column themselves. Instead, they have a hollow, oil-filled tube called the notochord. The notochord is the embryonic vertebral column that evolves into a full-fledged spinal cord when the embryo develops.
They are also one of the only animals today that have an intracranial joint in their skull, which allows them to unhinge their jaws from the rest of the skull and consume prey almost three times their own size.
While on the one side these fish can’t do without their notochord and intracranial joint, on the other, they canlive without their lungs. Coelacanths’ are the only known fish to have lungs and these lungs develop normally (as in vertebrates) as embryos. But as they grow older, the lungs become smaller and finally stop working, becoming completely useless. To breathe, the fish uses the scaly plates on its body as gills.
Notochord in an embryo. The notochord develops into a full-fledged vertebral column in most species. (Image Source)
Their brains contain more fat than actual brains
Coelacanths give the term ‘small-minded’ a completely new meaning. Only 1.5% of their cranial cavity constitutes their brain matter. The rest of the cavity is made of fat. Scientists are still unsure what these fish do with the fat in their cranial cavity. But it has been observed that younger Coelacanths have larger brains and lesser fat and this proportion inverts as they age.
They are nocturnal
Coelacanths spend most of their days in cool and dark caves sleeping. They only come out at night to feed. They are drift-feeders, meaning they let the current drift them along the ocean floor. They hunt fish and cephalopods like squids, nautilus, cuttlefish and more. They aren’t very competitive when it comes to territory and food and are quite willing to share their belongings with fellow Coelacanths.
Coelacanths huddling in the shadow of a cave (Image Source)
They use an electrosensory system to navigate the seas
Coelacanths possess a rostral organ in their snouts just like Anchovy which is a gel-filled cavity surrounded by a layer of adipose fat tissue. This organ is extremely sensitive to underwater electromagnetic signals and Coelacanths use this organ to navigate the seas, find prey and avoid obstacles.
The females are one-man women during the mating season
Female Coelacanths are serial monogamists and mate with just one select mate during breeding season. This mate may or may not change across the seasons and may or may not be shared between two females.
Once, the gender ratio in the world of Coelacanths was so off balance, it was noticed that the young of two females living in close quarters were sired by the same father.
They give birth to live young
Coelacanths are the only fish in the world to have live births. In 1975, researchers at the American Museum of Natural History dissected a dead specimen to find it pregnant with five embryos. The embryos resembled full-grown Coelacanths in shape and scale-texture, with just a few differences that they were smaller in size and the embryos had a small yellow film covering their bodies and a large yolk sack protruding from their pelvic fins. It’s believed that Coelacanths’ eggs hatch within the mother’s womb and the ‘pups’ are then birthed live.
Coelacanths are foul tasting, to say the least. Their scales secrete copious amounts of mucous and their bodies contain toxic oils, urea and wax compounds which are both inedible and harmful to the human body. So don’t be in a hurry to get one on your plate.
They are the only species of fish to have an operetta to their name
Remember the dead Coelacanth with the five embryos in her womb? Well, as it turns out, she was the muse to a musically-inclined scientist’s operetta.
Dr Charles Rand, a haematologist from Long Island produced his quirky ode to the pregnant fish in an operetta entitled Quintuplets at 50 Fathoms Can Be Fun, also called A Coelacanth’s Lament. It was set to the music of the Gilbert and Sullivan song ‘Tit Willow’ and is one of the American Museum of Natural History’s best creations.
The first coelacanth sketch made by Marjorie Courtenay-Latimer, the museum curator who discovered the first live coelacanth specimen. (Image Source)
Now that you know so much about the coelacanth, it’s time to meet one in person.
June 5th is celebrated as World Environment Day each year. While some years focus on saving wildlife, others focus on cleaner water. This year, 2018, the theme for World Environment Day is:
#BeatPlasticPollution
Here are 5 facts about this year’s World Environment Day celebrations:
India is leading the charge with their campaign #BeatPlasticPollution and is hosting the global celebration and observation of this all-important day. Pan-Indian plastic clean-up drives are being organized and schools are being mobilized to conduct neighbourhood marches, to spread the word about the terrifying impact of plastic on the world. In fact, in states like Gujarat, companies are reusing the 200 metric tonnes of plastic by-product from their paper manufacturing plants to power cement production plants across the state.
Peru has come up with a supremely unique solution to ending plastic pollution while helping their poor. The country recycles its plastic bottles and makes out of them – ponchila – which is a combination of “poncho” and “mochila”, a coat-bag amalgamation, made specifically for the poor children in the Andes. The product is a bag/poncho which can be used to carry books and transformed into a poncho to wear. The children, most of whom do not have warm clothing and who must travel several miles to reach their schools, are given these weather-proof and recyclable ponchila to use. Watch this video to see a ponchila in action.
Samoa recently had one of its own receive the Environmental Award for the Asia-Pacific Low-Carbon Lifestyles Challenge from the United Nations. Angelica Salele was awarded US$10,000 for her invention – the reusable cotton sanitary napkin. Not only are Salele and her partner Isabell Rasch normalizing conversations about menstrual hygiene in Samoa, but they’re tackling a big issue – the 44.9 billion plastic-coated pads that fill-up landfills globally each year. The reusable cotton pads are made from skin-friendly material and do not contain any trace of plastic or related materials.
The International Olympic Committee has made a commitment to reduce the production and usage of single-use plastics from the institution’s offices and events. The committee has also partnered with the International Union for Conservation of Nature to make sports environmentally sustainable. As part of this project, the IUCN has provided the IOC route maps of all the places that will be touched during the Summer and Winter Olympics, in each of the countries who have applied to host them till 2026. The maps indicate plastic disposal sites and waste management sites, amongst other places, which can help the IOC curb plastic waste.
The United Nations Secretary-General Mr. António Guterres has made a global appeal asking for the end of usage of single-use plastic. As you’ll see in this video, Secretary-General Guterres makes a compelling argument why plastic should be banned. Just to re-iterate, here is his message:
A healthy planet is essential for a prosperous and peaceful future. We all have a role to play in protecting our only home, but it can be difficult to know what to do or where to start. That’s why this World Environment Day has just one request: beat plastic pollution.
Our world is swamped by harmful plastic waste. Every year, more than 8 million tonnes end up in the oceans. Microplastics in the seas now outnumber stars in our galaxy. From remote islands to the Artic, nowhere is untouched. If present trends continue, by 2050 our oceans will have more plastic than fish.
On World Environment Day, the message is simple: reject single-use plastic. Refuse what you can’t re-use.
Together, we can chart a path to a cleaner, greener world.